

Operating guide

Top level inclination sensor CANopen output DST X730

ia.danfoss.com

Table of Contents

1. 1.1 1.2 1.3	General Information2Contact2General2Abbreviations and terms3
2. 2.1 2.2	Electrical connections. 4 M12 x 1, 5-pin 43-01090 4 6 wires output 18 AWG 1.65 mm OD 5
3.	Network Management (NMT)6
8.	Restore default parameter
4.	Baud rate7
5.	Node-ID and resolution7
6.	Parameter settings7
7.	Restore default parameters7
8.	Heartbeat7
9	Error handling8
10.	SDO communication and read/write commands9
11.	PDO communication and Angle calculation9
12.	CANopen features summary17
13.	Status LED
14.	Digital filter setting
15.	Communication examples

1. General Information

1.1 Contact

Danfoss A/S Industrial Automation DK-6430 Nordborg Denmark www.ia.danfoss.com E-mail: IA-Sensorglobaltechnicalsupport@danfoss.com

1.2 General

The document describes the standard CANopen implementations created. It is addressed to CANopen system integrators and to CANopen device designers who already know the content of standards designed by C.i.A. (CAN in Automation).

1.3 Abbreviations and terms

Abbreviation/term	Definition
CAN	Controller Area Network Describes a serial communication bys that implements the "physical" level 1 and the "data link" level 2 of the ISO/OSI reference model.
CAL	CAN Application Layer Describes implementation of the CAN in level 7 "application" of the ISO/OSI reference model form which CANopen derives.
CMS	CAN Message Specification CAL service element. Defines the CAN Apllication Layer for the various industrial applications.
СОВ	Communication Object Unit of transport of data in a CAN network (aCAN message). A maximum of 2,048 COBs may be present i a CAN network, each of which may transport from 0 to a maximum of 8 bytes.
COB-ID	COB Identifier Identifying element of a CAN message. The identifier determines the priority of a COB in case of multiple messages in the network.
D1 - D8	Data from 1 to 8 Number of data bytes in the data field of a CAN message.
DLC	Data Length Code Number of data bytes transmitted in a single frame.
ISO	International Standard Organization International authority providing standards for various merchandise sectors.
NMT	Network Management CAL service element. Describes how to configure, initialize, manage errors in a CAN network.
PDO	Process Data Object Process data communication objects (with high priority).
RXSDO	Receive SDO SDO objects received from the remote device.
SDO	Service Data Object Service data communication objects (with low priority). The value of this data is contained in the "Objects Dictionary" of each device in the CAN network.
TXPDO	Transmit PDO PDO objects transmitted by the remote device.
TXSDO	Transmit SDO SDO objects transmitted by the remote device.

NOTE:

The numbers followed by the suffix "h" represent a hexadecimal value, with suffix "b" a binary value, and with suffix "d" a decimal value. The value is decimal unless specified otherwise.

2. Electrical connections 2.1 M12 x 1, 5-pin 43-01090

NOTE:

Please make sure that the CANbus is terminated. The impedance measured between CAN-H and CAN-L must be 60 ohm that means the cable must be connected to a 120 ohm resistor on each ends of the bus line. Internally the tranducer is not terminated with the resistor of 120 ohm. Do not confuse the signal lines of the CAN bus, otherwise communication with the transducer is impossible.

2.2 6 wires output 18 AWG 1.65 mm OD

NOTE:

Please make sure that the CANbus is terminated. The impedance measured between CAN-H and CAN-L must be 60 ohm that means the cable must be connected to a 120 ohm resistor on each ends of the bus line. Internally the tranducer is not terminated with the resistor of 120 ohm. Do not confuse the signal lines of the CAN bus, otherwise communication with the transducer is impossible.

3. Network Management T (NMT) n

The device supports CANopen network management functionality NMT Slave (Minimum Boot Up).

Every CANopen device contains an international Network Management server that communicates with an external NMT master. One device in a network, generally the host, may act as the NMT master.

Through NMT messages, each CANopen device's network management server controls state changes within its built-in **Communication State Machine.**

This is independent from each node's operational state machine, which is device dependant and described in **Control State Machine.**

It is important to distinguish a CANopen device's operational state machine from its Communication State Machine. CANopen sensors and I/O modules, for example, have completely different operational state machines than servo drives. The "**Communication State Machine**" in all CANopen devices, however, is identical as specified by the DS301. NMT messages have the highest priority. The 5 NMT messages that control the Communication State Machine each contain 2 date bytes that identify the node number and a command to that node's state machine. Table 1 shows the 5 NMT messages surpported, and Table 2 shows the correct message for

	2 3110 4 2 3	the con
sending t	hese mes	ssages.

NMT Message	COB-ID	Data Byte 1	Data Byte 2						
Start Remote Node	0	01h	Node-ID'						
Stop Remote Node	0	02h	Node-ID'						
Pre-operational State	0	80h	Node-ID'						
Reset Node 0 81h Node-ID'									
Reset Communication	0	82h	Node-ID'						
	* Node-ID = Drive address (from 1 to 7Fh)								

Table 1

Ark Fie	oitration Id					Data Field				
СО	B-ID	RTR	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
000	Dh	0	See table 1	See table 2			These bytes	are not sent		
										Table 2
4.	Baud ra	te	comm comm coum	nunication exa	ject =x20F2 a amples at the	nd 020F3 (see end of this		g this paramete ervice only if or		
5.	Node-II	D and resolut	comm comm	Node-ID can be configurable via SDO communication object 0x20F0 and 0x20F1 (see communication examples at the end of this documentation).			Changing	Important note: Changing this parameter can disturb the network! Use the service only if one device is connected to the network!		
			The d	efault Node-	ID is 7F.					
 6. Parameter settings 7. Restore default parameters 			marki sectio check The sy marki dictio sectio	sum calculatio pecial LSS para ng LL-PARA), a nary, will be a	be saved in a nal EEPROM a on. ameters (obje also part of th Iso saved in a nal EEPROM a	special and secured by ects with ae objec	microcor	ne internal arc ntroller the pa o 100,000 cycl	rameter write	
			markii		be restored to	(objects with o factory default ndex 0x1011).	t			
8. Heartbeat		isesta the he produ One c of this cycle applic	icer. or more device o heartbeat me fails from the	gh cyclic tran age done by es in the netw essage. If the heartbeat pro neartbeat cor	smission of the heartbeat ork are aware	heartbea The devic functiona The prod 0x1017.	ementation of t is mandator ce supports He ality. lucer heartbea	y. eartbeat Prod	ucer	
			Heart	beat Message	e					
						1				

COB-ID	Byte	0
700+Node-ID	Content	NMT State

9 Error handling

Principle

Emergency messages (EMCY) shall be triggered by internal errors on device and they are assigned the highest possible priority to ensure that they get access to the bus without delay (EMCY Producer). By default, the EMCY contains the error field with pre-defined error numbers and additional information.

EMCY Message

The EMCY COB-ID is defined in object 0x1014. The EMCY message consists of 8 bytes. It contains an emergency error code, the contents of object 0x1001 and 5 byte of manufacturer specific error code. The device uses only the 1st byte as manufacturer specific error code.

Error Behavior (object 0x4000)

If a serious device failure is detected the object 0x4000 specifies, to which state the module shall be set: 0: Pre-operational

- 1: Mo state change (default)
- 2: Stopped

Byte	Byte 1 Byte 2	Byte 3	Byte 4	Byte 5	Byte 6 Byte 7 Byte 8				
Description	Emergency Error code ¹⁾	Error Register (object 0x1001 ²⁾)	Manufacturer specific error code (always 0x00)	Manufacturer specific error code (object 0x4001)	Manufacturer specific error code NOT IMPLEMENTED (always 0x00)				
¹⁾ Error code	` 	0x0000 Error Reset on no ERrror (Error Register = 0) 0x1000 Generic error							
	²⁾ Always 0								

Supported Manufacturer Specific Error Codes (object 0x4001)

Manufacturer Specific Error Code (bit field)	Description				
0bxxxxxx1 ^(a)	Sensor Error TYPE DST X730 Z-360 (e.g. angle under/above limits, self-test failure, MEMS IC communication error)				
0bxxxxxx1 ^(a)	Sensor Error X-axis TYPE DST X730 XY-0xx (e.g. angle under/ above limits, self-test failure, MEMS IC communication error)				
Obxxxxxx1 ^(a)	Sensor Error Y-axis TYPE DST X730 XY-0xx (e.g. angle under/ above limits, self-test failure, MEMS IC communication error)				
0bxxx1xxxx	Program checksum error				
0bxx1xxxxx	Flash limit reached - error				
0bx1xxxxxx	LSS Parameter checksum error				
Example of limits for different version DST X730 dual axis version \pm 10° Er DST X730 dual axis version \pm 15° Er DST X730 dual axis version \pm 20° Er DST X730 dual axis version \pm 20° Er DST X730 dual axis version \pm 30° Er DST X730 dual axis version \pm 45° Er	the actual measured angle is under or above limits. ons are reported below: ror limit are \pm 11° (\pm 11° are also the FSO angles STOP) ror limit are \pm 16.5° (\pm 16.5° are also the FSO angles STOP) ror limit are \pm 22° (\pm 22° are also the FSO angles STOP) ror limit are \pm 33° (\pm 33° are also the FSO angles STOP) ror limit are \pm 49.5° (\pm 49.5° are also the FSO angles STOP) ror limit are \pm 49.5° (\pm 49.5° are also the FSO angles STOP)				

DST X730 dual axis version \pm 90° Error limit are \pm 87° (\pm 87° are also the FSO angles STOP)

10. SDO communication and read/write commands

The device fulfils the SDO Server functionality. With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data typ SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

Structure of SDO-request by the Master

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
600+Node-ID	8	CMD	Index		Sub-Index	Data	Data	Data	Data

Structure of SDO-answer by the Slave

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
580+Node-ID	8	RES	Inc	Index		Data	Data	Data	Data

Write Access, Data Transfer from Host to Slave

Each access to object dictionary is checked by the slave for validity. Any write access to nonexistent objects, to read - only objects or with a non-corresponding data format are rejected and answered with a corresponding error message.

CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5 - 8 contian a 32 bit value) 28 hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value 2F hex Sending of 1-byte data (byte 5 contians an 8-bit value)

The Slave answers:

RES response of the slave: 60 hex Data sent successfully 80 hex Error

Read Access, Data Transfer form Slave to Host

Any read access to non-existing objects is answered with an error message.

CMD determines the direction of data transfer: 40 hex read access (in any case)

The Slave answers:

RES Response of the slave: 42 hex Bytes used by node when replying to read command with 4 or less data 43 hex Bytes 5 - 8 contain a 32-bit value 4B hex Bytes 5, 6 contain a 16-bit value 4F hex Byte 5 contains an 8-bit value 80 hex Error

11. PDO communication and Angle calculation

Transmit PDO #0

This PDO transmits asynchronously the position value of the angle sensor. The Tx PDO#0 shall be transmitted cyclically, if the cyclic timer (object 0x1800.5) is programmed > 0. Values between 4 ms and 65535 ms shall be selectable by parameter settings. The Tx PDO#0 will be transmitted by entering the "Operational" state.

Byte	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5 Byte 6 Byte 7 Byte 8			
Description X Axis 0bject (0x6010) Low-Byte		X Axis object (0x6010) High-Byte	Y Axis object (0x6020) Low-Byte	Y Axis object (0x6020) High-Byte	(0x00)			
In the following figures an example of PDO mapping is reported in the case of Angle X = 0.00° and Angle Y = 0.00° (Node-ID = 7Fh and resolution \pm 0.01°								

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1FFh	00h							

Angle X:

Byte 2 MSB (00h) = 00h; Byte 1 LSB (00h) = 00h; Angle X = 0000h to decimal 0d (resolution $\pm 0.01^\circ$) = 0.00°

In the following figures an example of PDO mapping is reported in the case of **Angle X = + 45.00°** and **Angle Y = 0.00°**. (Node-ID = 7Fh and resolution \pm 0.01°)

Angle Y:

Byte 4 MSB (00h) = 00h; Byte 3 LSB (00h) = 00h Angle Y = 0000h to decimal 0d (resolution $\pm 0.01^{\circ}$) = 0.00°

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1FFh	94h	11h	00h	00h	00h	00h	00h	00h

Angle X:

Byte 2 MSB (11h) = 11h; Byte 1 LSB (94h) = 94h; Angle X = 1194h to decimal 4500d (resolution $\pm 0.01^{\circ}$) = +45.00°

In the following figures an example of PDO mapping is reported in the case of **Angle X = -45.00°** and **Angle Y = 0.00°.** (Node-ID = 7Fh and resolution \pm 0.01°)

Angle Y:

Byte 4 MSB (00h) = 00h; Byte 3 LSB (00h) = 00h Angle Y = 0000h to decimal 0d (resolution $\pm 0.01^{\circ}$) = 0.00°

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1FFh	6Bh	EEh	00h	00h	00h	00h	00h	00h

Angle X:

Byte 2 MSB (EEh) = EEh; Byte 1 LSB (6Bh) = 6Bh; Angle X = EE6Bh to decimal 61035d If the Angle X in decimal is greater thanm 32768, the Angle X is NEGATVE and it must be computed as below (resolution \pm 0.01° Angle X = EE6Bh to decimal 61035d Angle X = Angle X (in decimal) - 65535d = 61035d - 65535d = -4500d (resolution \pm 0.01°) = -45.00°

Angle Y:

Byte 4 MSB (00h) = 00h; Byte 3 LSB (00h) = 00h Angle Y = 0000h to decimal 0d (resolution $\pm 0.01^{\circ}$) = 0.00°

In the following figures an example of PDO mapping is reported in the case of Angle X = 0.00° and Angle Y = 0.00° (Node-ID = 7Fh and resolution $\pm 0.01^{\circ}$)

ID	Byte	e 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1FFł	00	h	00h						

Angle X:

Byte 2 MSB (00h) = 00h; Byte 1 LSB (00h) = 00h; Angle X = 0000h to decimal 0d (resolution $\pm 0.01^{\circ}$) = 0.00°

In the following figures an example of PDO mapping is reported in the case of **Angle X = 0.00°** and **Angle Y = +45.00°**. (Node-ID = 7Fh and resolution $\pm 0.01°$)

Angle Y:

Byte 4 MSB (00h) = 00h; Byte 3 LSB (00h) = 00h Angle Y = 0000h to decimal 0d (resolution $\pm 0.01^{\circ}$) = 0.00°

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1FFh	00h	00h	94h	11h	00h	00h	00h	00h

Angle X:

Byte 2 MSB (00h) = 00h; Byte 1 LSB (00h) = 00h; Angle X = 0000h to decimal 0d (resolution $\pm 0.01^{\circ}$) = 0.00°

In the following figures an example of PDO mapping is reported in the case of **Angle X = 0.00°** and **Angle Y = +45.00°**. (Node-ID = 7FH and resolution \pm 0.01°)

Angle Y:

Byte 4 MSB (11h) = 11h; Byte 3 LSB (94h) = 94h Angle Y = 1194h to decimal 4500d (resolution $\pm 0.01^{\circ}$) = +45.00°

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1FFh	00h	00h	6Bh	EEh	00h	00h	00h	00h

Angle X:

Byte 2 MSB (00h) = 00h; Byte 1 LSB (00h) = 00h; Angle X = 0000h to decimal 0d (resolution $\pm 0.01^\circ$) = 0.00°

Angle Y:

Byte 4 MSB (EEh) = EEh; Byte 3 LSB (6Bh) = 6Bh Angle Y = EE6Bh to decimal 61035d If the Angle Y in decimal is greater than 32768, the Angle Y is NEGATIVE and it must be computed as below (resolution \pm 0.01°) Angle Y = EE6Bh to decimal 61035d Angle Y = Angle Y (in decimal) - 65535d = 61035d - 65535d = -4500d (resolution \pm 0.01°) = -45.00°

Transmit PDO#0 - Single axis configuration Z (-180° - +180°) model DST X730 Z-360

This PDO transmits synchronously the position value of the inclinationsensor. The Tx PDO#0 shall be transmitted cyclically, if the cyclic timer (object 0x1800.5) is programmed > 0. Values between 4 ms and 65535 ms shall be selectable by parameter settings. The Tx PDO#0 will be transmitted by entering the "Operational" state.

Byte	Byte 1	Byte 2	Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8						
Description	Z Axis (object 0x6010) Low-Byte	Z Axis (object 0x6010) High-Byte	(0x00)						
Int he following figures an example of PDO mapping is reported in the case of Angle Z = -180.0° (in 0 - 360° configuration the equivalent angle is 0.00°). (Node-ID = 7Fh and resolution \pm 0.01°									

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1FFh	AFh	B9h	00h	00h	00h	00h	00h	00h

Angle Z:

Byte 2 MSB (B9h) = B9h; Byte 1 LSB (AFh) = AFh; Angle Z = B9AFh to decimal 47535d If the Angle Z in decimal is greater than 32768, the Angle Z is NEGATIVE and it must be computed as below (resolution \pm 0.01°) Angle Z = B9AFh to decimal 47535d Angle Z (in decimal) - 65535d = 47535d -65535d = - 18000d (resolution \pm 0.01°) = -180.00°

In the following figures an example of PDO mapping is reported in the case of Angle Z = -90.0° (in 0 - 360° configuration the equivalent angle is +90.00°). (The Node-ID = 7FH and resolution \pm 0.01°).

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1FFh	D7h	Dch	00h	00h	00h	00h	00h	00h

Angle Z:

Byte 2 MSB (Dch) = Dch; Byte 1 LSB (D7h) = D7h; Angle Z = DcD7h to decimal 56535d If the Angle Z in decimal is greater than 32768, the Angle Z is NEGATIVE and it must be computed as below (resolution \pm 0.01°) Angle Z = DcD7h to decimal 56535d Angle Z (in decimal) - 65535d = 56535d -65535d = - 9000d (resolution \pm 0.01°) = -90.00°

In the following figures an example of PDO mapping is reported in the case of Angle Z = 0.0° (in 0 - 360° configuration the equivalent angle is + 180.00°). The Node-ID = 7FH and resolution $\pm 0.01^{\circ}$.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1FFh	00h							

Angle Z:

Byte 2 MSB (00h) = 00h; Byte 1 LSB (00h) = 00h; Angle Z = 0000h to decimal $0d = 0.00^{\circ}$

In the following figures an example of PDO mapping is reported in the case of Angle Z = + 90.0° (in 0 - 360° configuration the equivalent angle is +270.00°). The Node-ID = 7FH and resolution \pm 0.01°.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
1FFh	28h	23h	00h	00h	00h	00h	00h	00h

Angle Z:

Byte 2 MSB (23h) = 23h; Byte 1 LSB (28h) = 28h; Angle Z = 2328h to decimal 9000d = +90.00°

12. CANopen features summary

Communication Profile The parameters which are critical for communication are determined in the Communication profile. This area is common for all CANopen devices.

	Cub	Commu				
Index	Sub Index	Name	Туре	Access	Default value	Comments
1000h		Device Profile	Unsigned 32	Ro	0x0008019A	Profile 410: Device profile for inclinometer (not fully implemented)
1001h		Error Register	Unsigned 8	Ro	0x00	Always ZERO
1008h		Manufacturer Device Name	String	Const	"GIB"	Refer to Danfoss data sheet: GIB: DST X730 Top level inclination sensor
1009h		Manufacturer Hardware version	String	Const	"1.00"	
100Ah		Manufacturer Software version	String	Const	"1.24"	
1010h	0	Number of entries	Unsigned 8	Ro	1	"save" (0x65766173) to store all parameters
101011	1	Save all parameters	Unsigned 32	Wo		(objects with marking PARA)
1011h	0	Restore default parameters	Unsigned 8	Ro	"1"	"load" (0x64616F6C) to restore all parameters (objects with marking PARA and LSS-PARA)
	1	Restore all parameters	Unsigned 32	Rw		
1014h	0	Emergency ID	Unsigned 32	Rw	0x80 + Node-ID	
1017h	0	Producer time/ Heart beat	Unsigned 16	Rw	0	Min. = 0 & Max. = 65536 with unit = 1 ms If 0: NOT USED From 1 - 19 NOT ACCEPTED From 20 to 65535 ACCEPTED
	0	Identity object	Unsigned 8	Ro	4	
	1	Vendor ID	Unsigned 32	Ro	0x0000093	
1018h	2	Product code	Unsigned 32	Ro	0x0000064	Refer to Vendor ID:0x0000093
	3	Revision number	Unsigned 32	Ro	0x0000001	
	4	Serial number	Unsigned 32	Ro	0x0000000	
			S	DO Serv	er Parameter	
	0	Number of entries	Unsigned 8	Ro	2	
1200h	1	COB-ID Client to Server (Rx)	Unsigned 32	Ro	0x600 + Node- ID	
	2	COB-ID Server to to Server (Tx)	Unsigned 32	Ro	0x580 + Node- ID	
	0	1st Transmit PDO Parameter	Unsigned 8	Ro		
	1	COB-ID	Unsigned 32	Ro	180h + Node-ID	
1800h	2	Transmission Type Trans PDO-PARA	Unsigned 8	Rw	254 (0xFE)	0x01 - 0xf0 = synch cyclic Outputs are only updated after "n" synch objects. n = 0c01 (1) - 0xF0 (240 0xFC not implemented 0xFS not implemented 0xFE = asynchronous 0xFF = not implemented
	5	Event Timer Trans PDO-PARA	Insigned 16	Rw	100 (0x65)	0 = Inactive Min. = 4 & Max. = 65535 with unit = 1 ms
			Tx PDC	D [X] 0 M	apping Paramete	r
	0	Number of entries	Unsigned 8	Ro	2	The inclination of longitudinal axis (long; X)
1A00h	2	1 st Mapped Object 2 nd Mapped Object	Unsigned 32 Unsigned 32	Ro	0x60100010 0x60200020	is indicated in Idx6010 in the cas of dual axis sensor (±10° - ±90°) The inclination of transverse axis (tran;Y9 is indicated in Idx 6020 in the case of dual axis sensor (±10° - ±90°) The inclination of Z axis is indicated in Idx 6010 in the case of single axis sensor (±180°)
1A00h	1	1 st Mapped Object	Unsigned 8 Unsigned 32	Ro Ro	2 0x60100010	The inclination of longitudinal is indicated in ldx6010 in the ca sensor $(\pm 10^{\circ} - \pm 90^{\circ})$ The inclination of transverse ax indicated in ldx 6020 in the cas sensor $(\pm 10^{\circ} - \pm 90^{\circ})$ The inclination of Z axis is indicated

Manufacturer Specific Profile Objects

In this section you will find the manufacturer specific profile indices for transducer.

"Setting the Node-ID"

Index	Sub Index	Name	Туре	Access	Default value	Comments
20F0h	0	Setting of the Node-ID	Unsigned 8	Rw	0x7F (=127d)	The Node-ID used to access the sensor in the CANopen network
20F1h	0	Setting of the Node-ID	Unsigned 8	Rw	0x7F (=127d)	The Node-ID ised tp access the sensor in the CANopen network

A change of the Node-ID is only accepted if the entries 20F0 and 20F1 contain the same changed value. Values below 1 / above 127 are not accepted; the existing setting remains valid. After setting new entries a reset must be made so that the new entries become valid (switch off the module for a short time).

"Setting the Baud Rate"

Index	Sub Index	Name	Туре	Access	Default value	Comments
20F2h	0	Setting the Baud rate	Unsigned 8	Rw	0x03 (250 kBaud)	Baud rate of the Can network 0 = 1000 kBaud 1 = 800 kBaud 2 = 500 kBaud 3 = 250 kBaud (default) 4 = 125 kBaud 5 = 100 kBaud 6 = 50 kBaud 7 = 20 kBaud
20F3h	0	Setting the Baud rate	Unsigned 8	Rw	0x03 (250 kBaud)	Baud rate of the Can network 0 = 1000 kBaud 1 = 800 kBaud 2 = 500 kBaud 3 = 250 kBaud (default) 4 = 125 kBaud 5 = 100 kBaud 6 = 50 kBaud 7 = 20 kBaud

A change of the Baud rate is only accepted if the entries 20F2 and 20F3 contain the same changed value. Values above 7 are not accepted; the existing setting remains valid. After setting new entries a reset must be made so that the new entries become valid (switch off the module for a short time).

"Setting the Digital filter"

Index	Sub Index	Name	Туре	Access	Default value	Comments
2001h	0	Filter Setting - PARA	Unsigned 8	Rw	0	Filter = 0 Slow; Filter = 1 Medium; Filter = 2 Fast; See Par. 14 and examples at the end of this guide.

A change of the Filter Setting is only accepted after a STORE command (see Store Parameters setting via SDO 0x1010 Sub 1 and examples of Filter setting at the end of this manual).

Index	Sub Index	Name	Туре	Access	Default value	Comments				
4000h		Error Behavior - PARA	Unsigned 8	Rw	1	0: Pre-operational; 1: no state change; 2: stopped; Min. = 0 & Max. = 255				
4001h		Error code	Unsigned 8	Ro	0	0: no error; Min. = 0 & Max. = 255				
5000h		Automatic NMT Start after Power-On - PARA	Unsigned 8	Rw	0	0: not activated 1: activated; Min. = 0 & Max. = 1				
5001h		PDO coding used - PARA	Unsigned 8	RW	1	0: Big Endian 1: Little Endian				

Manufacturer Specific ProfileIn this section you will find the manufacturerObjectsspecific profile indices for the tranducer

Manufacturer Specific Profile Objects (according to CIA DS-410)

Index	Sub Index	Name	Туре	Access	Default value	Comments
6000h	0	Resolution	Unsigned 16	Rw	0x32 (50d)	Display resolution of the inclination for both axes ⁽¹⁾ 10d = Inclination is indicated as signed int in 0.01° 50d = Inclination is indicated as signed int in 0.05° 100d = Inclination is indicated as signed int in 0.1° 500d = Inclination is indicated as signed int in 0.5° 1000d = Inclination is indicated as signed int in 1.0° Note : If the display resolution is changed all offset values or zero point values which may have been entered are deleted. Therefore the sensor must be set before it is aligned! (1) A change of the display resolution in Idx 6000 is only accepted, if the scaling in Idx 6011 and Idx 6021 is activated.
6010h	0	Slope Longitu- dinal	Signed 16	Ro		Inclination of the longitudinal axis X (long:X) in the case of dual axis sensor ($\pm 10^{\circ} - \pm 90^{\circ}$). Inclination of the longitudinal axis Z in the case of single axis sensor ($\pm 180^{\circ}$)
6011h	0	Slope Longitu- dinal Operating Pa- rameter	Unsigned 8	Rw	0b000000xx	Inverting the sign Ob 0000 00x0 deactivated Ob 0000 00x1 activated Scaling of the measured value Ob 0000 000x deactivated Ob 0000 001x activated(1) Value output: Slope longitudinal = measured value in dependence of Resolution (Index 6000) + Slope Longitudinal Offset + Differential Slope Longitudinal Offset (1) A change of the display resolution in Idx 6000 is only accepted, if the scaling in Idx 6011 and Idx 6021 is activated. Note: See examples of this functionality at the end of this manual in Examples 5, 6, 7 and 8.

Index	Sub Index	Name	Туре	Access	Default value	Comments		
6012h	0	Slope Longitu- dinal Preset Value	Signed 16	Rw	0x0000	Corrects the measured sensor value. The displayed value Slop Longitudinal is set to the entered value. The offset is indicated in the index 0x6013		
6013h	0	Slope Longitu- dinal Offset	Unsigned 16	Ro	0x0000	Offset value calculated from the following objects: Slope Longitudinal Offset = Slope Longitudinal Preset Value t _{acc} – measu- red value t _{acc} (t _{acc} : istant when the Slope Longitudinal Preset Value is set)		
6014h	0	Slope Longitu- dinal Differential Offset	Signed 16	Rw	0x0000	Shifts the displayed value by the entered value irrespective of "Slope Longitudina Preset Value".		
6020h	0	Slope Lateral	Unsigned 16	Ro		Inclination of the Lateral axis Y (later ; X)		
6021h	0	Slope Lateral Operating Pa- rameter	Unsigned 8	Rw	0b000000xx	Inverting the sign Ob 0000 00x0 deactivated Ob 0000 00x1 activated Scaling of the measured value Ob 0000 000x deactivated Ob 0000 001x activated ⁽¹⁾ Value output: Slope Lateral = measured value in depen- dence of Resolution (Index 6000) + Slope Lateral Offset + Differential Slope Lateral Offset ⁽¹⁾ A change of the display resolution in Idx 6000 is only accepted, if the scaling in Idx 6011 and Idx 6021 is activated.		
6022h	0	Slope Lateral Preset Value	Signed 16	Rw	0x0000	Corrects the measured sensor value. The displayed value Slop Lateral is set to the entered value. The offset is indicated in the index 0x6023 Note: See examples of this functionality at the end of this manual in Examples 5, 6, 7 and 8		
6023h	0	Slope Lateral Offset	Signed 16	Ro	0x0000	Offset value calculated from the following objects: Slope Lateral Offset = Slope Lateral Preset Value t _{acc} – measured value t _{acc} (t _{acc} : istant when the Slope Lateral Preset Value is set)		
6024h	0	Slope Lateral Dif- ferential Offset	Signed 16	Rw	0x0000	Shifts the displayed value by the entered value irrespective of "Slope Laterall Preset Value".		

Ro = the parameter can be read only Rw = the parameter can be read and also written Wo = the parameter can be written only

13. Status LED

The integrated two color status LED signals the recent device state (Run LED, green) as well as CAN communication errors that moight have occured (Error LED), red). The color and the flashing frequency of the LED distinguish the different device states as shown below.

	Status LED						
Run LED	LED State	Description					
0000000000 Off		No power supply is connected					
0000000000	Blinking	The device is in state Pre-Operational					
••••••	Single Flash	The device is in state Stopped					
••••••	ON	The device is in state Operational					

	Error LED						
Run LED LED State		Description					
0000000000	Off	The device is in working condition					
••••••	Single Flash	CAN Warning Limit reached					
•••••	On	The device is in state Bus-Off					
0000000000	Red/Green On	Limit Angles reached (110% FS or $\pm 87^{\circ}$)					

Legend

0	LED green OFF
	LED green ON
0	LED red OFF
•	LED red ON
•	LEDs red & green ON together
0 • 0 • 0 •	LED green blinking (200 ms ON/OFF)
••••	LEDs green single flash (500 ms ON/OFF)

14. Digital filter setting

The inclination sensor offers the possibility to suppress the influence of external disturb ing vibrations. The ionternal lowpass digital filters (8th order) are programmable in 3 steps (more steps can be obtained on request and they can be adjusted for any kind of application). The sensor has digital filters that can be selected according to Table 2 below.

Theilter selection is configurable via SDO communication objecy 0x2001 Sub 0 (see Manufacturer Specific Profile Objects and communication examples at the end of this document).

Filter Selection (via SDO oggetto 0x2106 Sub 6)	Filter code	Appliucation
Slow	Filter 0	Static inclination measurement with high damping to vibration
Medium	Filter 1	Inclination measurement in applications that requires a certain dynamism, without overshoot at angle changes with good damping
Fast	Filter 2	General application with medium high dynamic

Table 3 - Filter setting

15. Communication examples

Example 1: How to change the Baud Rate Setting from 250 kbaud to 500 kbaud

With Service Data Object (S.D.O) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

Structure of SDO-request by the Master

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
600+Node-ID	8	CMD	Inc	dex	Sub-Index	Data			

CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5 - 5 contain a 32 bith value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value)

Structure of SDO-answer by the Slave

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
580+Node-ID	8	RES	Inc	dex	Sub-Index				

RES Response of Slave:

60 hex Data sent successfully 80 hex Error

A change of the Baud rate is only accepted if the entries 0x20F2 and 0x20F3 contain the same changed value. With the aim to change the baud rate from 250 kBaud (0x03) to 500 kBaud (0x02) write a second SDO (in the example the Node-ID = 0x7F9

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	2Fh	F2h	20h	00h	02h	00h	00h	00h

A change of the Baud rate is only accepted if the entries 0x20F2 and 0x20F3 contain the same changed value. With the aim to change the baud rate from 250 kBaud (0x03) to 500 kBaud (0x02) write a second SDO (in the example the Node-ID = 0x7F9

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	2Fh	F3h	20h	00h	02h	00h	00h	00h

		Object:				
20F2h	0	Setting of the Baud rate	Unsigned 8	Rw	0x03 (250 kBaud)	Baud rate of the CAN network 0 = 1000k Baud 1 = 800 kBaud 2 = 500 kBaud 3 = 250 kBaud 4 = 125 kBaud 5 = 100 kBaud 6 = 50 kBaud 7 = 20 kBaud
20F3h	0	Setting of the Baud rate	Unsigned 8	Rw	0x03 (250 kBaud)	Baud rate of the CAN network 0 = 1000k Baud 1 = 800 kBaud 2 = 500 kBaud 3 = 250 kBaud 4 = 125 kBaud 5 = 100 kBaud 6 = 50 kBaud 7 = 20 kBaudk

The supported baud rate are listed in the fo e:

ol	lowing	tabl	e
ol	lowing	tabl	e

Byte 5	Baudrate
07h	20 kBaud
06h	50 kBaud
05h	100 kBaud
04h	125 kBaud
03h	250 kBbaud
02h	500 kBbaud
01h	800 kBbaud
00h	1000 kBbaud

The answer after successful storing you will receive is:

ID	D Byte 1 Byte 2 Byte 3		Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	
5FFh	60h	F2h	20h	00h	00h	00h	00h	00h

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	F3h	20h	00h	00h	00h	00h	00h

IMPORTANT NOTE:

A change of the Baud rate is only accepted if the entries 0x20F2 and 0x20F3 contain the same changed value. Values above 7 are not accepted; the existing setting remains valid. Afer setting the new entries a reset must be made so that the new entries becom valid (switch off the module for a short time).

Example 2: How to change the ID-Node from 0x7Fh (127d) (Current setting) to 0x06h (6d) With Service Data Object (S.D.O) the access

to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

Structure of SDO-request by the Master

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
600+Node-ID	8	CMD	Index		Sub-Index				

CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5 - 5 contain a 32 bith value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value)

Structure of SDO-answer by the Slave

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
580+Node-ID	8	RES	Index		Sub-Index				

RES Response of Slave:

60 hex Data sent successfully 80 hex Error

A change of the Node-ID is only accepted if the entries 0x20F0 and 0x20F1 contain the same changed value. With the aim to change the Node-ID from 127 (0x7F) to 6 (0x06) write a firat SDO (in the example the Node-ID = 0x7F)

ID	ID Byte 1 Byte 2 Byte 3 By		Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	
67Fh	2Fh	F0h	20h	00h	06h	00h	00h	00h

A change of the Node-ID is only accepted if the entries 0x20F0 and 0x20F1 contain the same changed value. With the aim to change the Node-ID from 127 (0x7F) to 6 (0x06) write a second SDO (in the example the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	2Fh	F1h	20h	00h	06h	00h	00h	00h

20F0h	0	Setting of the Node-ID	Unsigned 8	Rw	0x7F (0127d)	The Node-ID used to access the sensor in the CANopen
20F1h	0	Setting of the Node-ID	Unsigned 8	Rw	0x7F (0127d)	The Node-ID used to access the sensor in the CANopen

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	F0h	20h	00h	00h	00h	00h	00h

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	F1h	20h	00h	00h	00h	00h	00h

IMPORTANT NOTE:

A change of the Node_ID is only accepted if the entries 0x20F0 and 0x20F1 contain the same changed value. Values below 1 / above 127 are not accepted; the existing setting remains valid. Afer setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time).

Example 3: How to change the PDO rate (time interval) from 100 ms (current setting) to 20 ms

With Service Data Object (S.D.O) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

Structure of SDO-request by the Master

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
600+Node-ID	8	CMD	Index		Sub-Index	Data			

CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5 - 5 contain a 32 bith value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value)

Structure of SDO-answer by the Slave

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
580+Node-ID	8	RES	Inc	Index					

RES Response of Slave:

60 hex Data sent successfully 80 hex Error

With the aim to change the PDO rate from 100 ms (0x64) to 20 ms (0x14) Write (in the example the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	2Bh	00h	18h	05h	14h	00h	00h	00h

	0	1st Transmit PDO Parameter	Unsigned 8	Ro		
	1	COB-ID	Unsigned 32	Ro	180h + Node-ID	
10004	2	Transmission Type	Unsigned 8	Rw	254	Asynchronous transmission
1800h	3	Inhibit Time	Unsigned 16	Ro	0	Min. = 0 & Max. = 65535 with unit = 1 ms
	4	Reserved	//			
	5	Timer	Unsigned 16	Rw	100 (64)	Min. = 0 & Max. = 65535 with unit = 1 ms

Object:

The answer after successful storing you will receive is:

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	00h	18h	05h	00h	00h	00h	00h

With the aim to save functionality write the "save" command as below: Write (in the example the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	23h	10h	10h	01h	73h	61h	76h	65h

Note: save command is given by sending the code:

|--|

Where:

73h = ASCII code "s" **61h** = ASCII code "a" **76h** = ASCII code "v"

65h = ASCII code "e"

The answer after successful storing you will receive is:

The answer after successful storing you will receive is:

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	10h	10h	01h	00h	00h	00h	00h

IMPORTANT NOTE:

After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time).

Example 4: How to activate an automatic NMT Start after Power ON (the PDO will be send automatically after power ON)

With Service Data Object (S.D.O) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

Structure of SDO-request by the Master

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
600+Node-ID	8	CMD	Index		Sub-Index	Data			

CMD determines the direction of data transfer and

the size of the data object: 23 hex Sending of 4-byte data (bytes 5 - 5 contain a 32 bith value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value)

Structure of SDO-answer by the Slave

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
580+Node-ID	8	RES	Inc	dex	Sub-Index				

RES Response of Slave:

60 hex Data sent successfully 80 hex Error

With the aim to activate an automatic NMT Start after power ON write (in the example the Node-ID = 0x7F

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	2Fh	00h	50h	00h	01h	00h	00h	00h

Object:

5000h	0	Automatic NMT Start after Power ON - PARA	Unsigned 8	Rw	0	0 = not activated 1= activated Min. = 0 & Max. = 1
-------	---	---	------------	----	---	--

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	00h	50h	00h	00h	00h	00h	00h

With the aim to save functionality write the "save" command as below: Write (in the example the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte
67Fh	23h	10h	10h	01h	73h	61h	76h	65h
		Not	te: save comm	nand is given	by sending the	e code:		
73	Sh	61h	7	6h	65h			
Where: 73h = ASC 61h = ASC 76b = ASC								

76h = ASCII code "v"

65h = ASCII code "e"

The answer after successful storing you will receive is:

The answer after successful storing you will receive is:

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	10h	10h	01h	00h	00h	00h	00h

IMPORTANT NOTE:

After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time).

Example 5: How to Preset the angle X to 0.00°

(in case of dual axis \pm 10° - \pm 90°) The vlues "Preset Value" (ldx 60x2) and "Diffential Ofset" (ldx 60x4) affects the display of the longitudianl and the instant t_{acc}. A typical application is the compensation of display errors dut to mounting (e.g. sensor zeroing). The sensor must first be brought to a defined position.

The value "Differential Offset" shifts the displayed value of the sensor by the entered value. A set "Preset Value" does not affect shifting.

<u>!</u>\

Note that the resolution parameter must be set before aligning the sensor (resolution, ldx 6000)!

With Service Data Object (S.D.O.) the access to entries of a device Object Dictionay is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

Structure of SDO-request by the Master

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte б	Byte 7	Byte 8
600+Node-ID	8	CMD	Inc	lex	Sub-Index	Data			

CMD determines the direction of data transfer and

the size of the data object: 23 hex Sending of 4-byte data (bytes 5 - 5 contain a 32 bith value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value)

Structure of SDO-answer by the Slave

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
580+Node-ID	8	RES	Inc	lex	Sub-Index				

RES Response of Slave:

60 hex Data sent successfully 80 hex Error

With the aim to preset the X angle to 0.00° Write (in the example the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	2Bh	12h	60h	00h	00h	00h	00h	00h

Object:

6012h0Slop Longitudinal
Preset ValueSigned 16RwCorrects the measured sensor
value. The displayed value
Slop Longitudinal is set to the
entered value. The offset is
indicated in the index 0x6013

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	12h	60h	00h	00h	00h	00h	00h

With the aim to save functionality write the "save" command as below: Write (in the example the Node-ID = 0x7E)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8			
67Fh	23h	10h	10h	01h	73h	61h	76h	65h			

Note: save command is given by sending the code:

Where:

73h = ASCII code "s" 61h = ASCII code "a"

76h = ASCII code "v"

65h = ASCII code "e"

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	10h	10h	01h	00h	00h	00h	00h

IMPORTANT NOTE:

After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time).

Example 6: How to Preset the angle Y to 0.00°

(in case of dual axis \pm 10° - \pm 90°) The vlues "Preset Value" (ldx 60x2) and "Diffential Offset" (ldx 60x4) affects the display of the longitudianl and the instant t_{acc}. A typical application is the compensation of display errors dut to mounting (e.g. sensor zeroing). The sensor must first be brought to a defined position.

The value "Differential Offset" shifts the displayed value of the sensor by the entered value. A set "Preset Value" does not affect shifting.

Structure of SDO-request by the Master

Ŵ

Note that the resolution parameter must be set before aligning the sensor (resolution, ldx 6000)!

With Service Data Object (S.D.O.) the access to entries of a device Object Dictionay is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
600+Node-ID	8	CMD	Index		Sub-Index	Da	ata		

CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5 - 5 ontain a 32 bith value) 28 hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value)

			Str	uctu	re of SDO	O-answer b	y the	Slave								
COB-II	D	DLC	Byte 1		Byte 2	Byte	3	Byte 4		Byte 5		Byte	6	Byte 7		Byte 8
580+Nod	le-ID	8	RES		l	Index		Sub-Inde	x							
	RES Response of Slave: 60 hex Data sent successfully 80 hex Error With the aim to preset the Yangle to 0.00° Write (in the example the Node-ID = 0x7F)															
ID	Byte	1	Byte 2	Ву	/te 3	Byte 4		Byte 5	E	Byte 6	B	Byte 7		Byte 8		
67Fh	2Bh	۱	22h	6	50h	00h		00h		00h		00h		00h		
Object:																
6022h	0	SI	op Longitudi Preset Value		Sigr	ned 16		Rw		valı Sloj ent			value Slop enter	ects the mea e. The display Longitudina red value. Th ated in the in	ed va l is se offs	alue t to the et is
			The	answ	er after s	successful st	toring	you will re	eceiv	/e is.						
ID	Byte	1	Byte 2	Ву	/te 3	Byte 4		Byte 5	E	Byte 6	E	Byte 7		Byte 8		
5FFh	60h	۱	22h	6	50h	00h		00h		00h		00h		00h		
						ave function mple the N				' commar	nd as	below	:			
ID	Byte	1	Byte 2	Ву	/te 3	Byte 4		Byte 5	E	Byte 6	B	Byte 7		Byte 8		
67Fh	23h	า	10h	1	l0h	01h		73h		61h		76h		65h		
Note: save command is given by sending the code:																
73	h		61h		7	6h		65h]						
Where										-						

Where: **73h** = ASCII code "s" **61h** = ASCII code "a" **76h** = ASCII code "v" **65h** = ASCII code "e"

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	10h	10h	01h	00h	00h	00h	00h

IMPORTANT NOTE:

After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time).

Example 7: How to Preset the angle Z to 0.00° (in case of single axis ± 180°)

The values "Preset Value" (ldx 60x2) and "Diffential Offset" (ldx 60x4) affects the display of the longitudianl and lateral axis. The value entered in "Preset Value" immediately corrects the measured value of the sensor cell at the instant t_{acc} . A typical application is the compensation of display errors due to mounting (e.g. sensor zeroing). The sensor must first be brought to a defined position. The value "Differential Offset" shifts the displayed value of the sensor by the entered value. A set "Preset Value" does not affect shifting.

Note that the resolution parameter must be set before aligning the sensor (resolution, ldx 6000)!

With Service Data Object (S.D.O.) the access to entries of a device Object Dictionay is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

Structure of SDO-request by the Master

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
600+Node-ID	8	CMD	Index		Sub-Index	Da	ata		

CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5 - 5 ontain a 32 bith value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value)

Structure of SDO-answer by the Slave

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8	
580+Node-ID	8	RES	Inc	lex	Sub-Index					

RES Response of Slave:

60 hex Data sent successfully 80 hex Error

With the aim to preset the Z angle to 0.00° Write (in the example the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	2Bh	12h	60h	00h	00h	00h	00h	00h

Object:

6012h 0	Slop Laterall Preset Value	Signed 16	Rw	Corrects the measured sensor value. The displayed value Slop Longitudinal is set to the entered value. The offset is indicated in the index 0x6013
---------	-------------------------------	-----------	----	--

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	12h	60h	00h	00h	00h	00h	00h

With the aim to save functionality write the "save" command as below:

Write (in the example the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	23h	10h	10h	01h	73h	61h	76h	65h

65h = ASCII code "e"

Note: save command is given by sending the code:

73h	61h	76h	65h
Where:			
73h = ASCII code "s"			
61h = ASCII code "a"			
76h = ASCII code "v"			

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	10h	10h	01h	00h	00h	00h	00h

IMPORTANT NOTE:

After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time).

Example 8: How to invert the direction (from CW to CCW) in angle Z (in case of single axis \pm 180°)

The values "Preset Value" (Idx 60x2) and "Diffential Offset" (Idx 60x4) affects the display of the longitudianl and lateral axis. The value entered in "Preset Value" immediately corrects the measured value of the sensor cell at the instant t_{acc} . A typical application is the compensation of display errors due to mounting (e.g. sensor zeroing). The sensor must first be brought to a defined position. The value "Differential Offset" shifts the displayed value of the sensor by the entered value. A set "Preset Value" does not affect shifting.

$\underline{\mathbb{N}}$

Note that the resolution parameter must be set before aligning the sensor (resolution, ldx 6000)!

With Service Data Object (S.D.O.) the access to entries of a device Object Dictionay is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

Structure of SDO-request by the Master

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
600+Node-ID	8	CMD	Inc	lex	Sub-Index	Data			

CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5 - 5 ontain a 32 bith value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value)

Structure of SDO-answer by the Slave

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
580+Node-ID	8	RES	Inc	Index					

RES Response of Slave:

60 hex Data sent successfully 80 hex Error

With the aim to invert the direction (from CW to CCW) in angle Z (in exam. the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	2Fh	11h	60h	00h	03h	00h	00h	00h

		Object:				
6011h	0	Slop Laterall Preset Value	Unsigned 8	Rw	0x02 (2d)	Inverting the sign 0b 0000 00x0 deactivated 0b 0000 00x1 activated

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	11h	60h	00h	00h	00h	00h	00h

With the aim to save functionality write the "save" command as below: Write (in the summer the Node ID = 0.75)

Write (in the example the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	23h	10h	10h	01h	73h	61h	76h	65h

Note: save command is given by sending the code:

73h 61h 76h 65h

Where: 73h = ASCII code "s" 61h = ASCII code "a"

76h = ASCII code "v"

65h = ASCII code "e"

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	10h	10h	01h	00h	00h	00h	00h

IMPORTANT NOTE:

After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time).

Example 9: How to change the resolution from $\pm 0.05^{\circ}$ to $\pm 0.01^{\circ}$

With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

Structure of SDO-request by the Master

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
600+Node-ID	8	CMD	Index		Sub-Index	Da	ata		

CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5 - 5 ontain a 32 bith value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value)

Structure of SDO-answer by the Slave

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
580+Node-ID	8	RES	Inc	Index					

RES Response of Slave:

60 hex Data sent successfully 80 hex Error

With the aim to change the resolution from $\pm 0.05^{\circ} 0x32$) to ± 0.01 (0x0A) write (in exam. the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	2Bh	00h	60h	00h	0Ah	00h	00h	00h

Obj	ect:
-----	------

6000h	0	Resolution	Unsigned 16	Rw	0x32 (50d)	Disaplay resolution of the inclination for both axis ⁽¹⁾ 10d = Inclination is indicated as signed int in 0.01° 50d = Incation is indicated as signed int in 0.05° 100d = Inclination is indicated as signed int in 0.1° 500d = Inclination is indicated as signed int in 0.5° 1000d = Inclination is indicated as signed int in 1.0 Note: If the dsiplay resolution is changed all offset values or zero point values which may have been entered are deleted. Therefore the sensor must be set before it is aligned! 1) A change of the dsiplay resolution in Idx 6000mis only accepted, if the scaling in Idx 6011 and Idx 6021 is activated.
-------	---	------------	-------------	----	------------	---

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	00h	60h	00h	00h	00h	00h	00h

With the aim to save functionality write the "save" command as below: Write (in the example the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	23h	10h	10h	01h	73h	61h	76h	65h

Note: save command is given by sending the code:

73h 61h 76h 65h

Where: **73h** = ASCII code "s" **61h** = ASCII code "a" **76h** = ASCII code "v" **65h** = ASCII code "e"

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	10h	10h	01h	00h	00h	00h	00h

IMPORTANT NOTE:

After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time).

Example 10: How to change the filter setting

from FAST (Filter = 2) to SLOW (filter = 0) With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of

arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

Structure of SDO-request by the Master

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
600+Node-ID	8	CMD	Inc	lex	Sub-Index	Data			

CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5 - 5 ontain a 32 bith value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value)

Structure of SDO-answer by the Slave

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
580+Node-ID	8	RES	Inc	lex	Sub-Index				

RES Response of Slave:

60 hex Data sent successfully

80 hex Error

With the aim to change the filter settings from FAST response (0x02) to SLOW response (0x00) write (in exam. the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	2Fh	01h	20h	00h	00h	00h	00h	00h

Object:

2001h 0		Filter Setting	Unsigned 8	Rw	2	Filter = 0 Slow Filter = 1 Medium Filter = 2 Fast
---------	--	----------------	------------	----	---	---

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	01h	20h	00h	00h	00h	00h	00h

With the aim to save functionality write the "save" command as below:

```
Write (in the example the Node-ID = 0x7F)
```

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	23h	10h	10h	01h	73h	61h	76h	65h

Note: save command is given by sending the code:

73h	61h	76h	65h

Where: **73h** = ASCII code "s" **61h** = ASCII code "a" **76h** = ASCII code "v" **65h** = ASCII code "e"

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	10h	10h	01h	00h	00h	00h	00h

IMPORTANT NOTE:

After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time).

Example 11: How to send the command RESTORE

With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

Structure of SDO-request by the Master

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
600+Node-ID	8	CMD	Inc	Index		Data			

CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5 - 5 ontain a 32 bith value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value)

Structure of SDO-answer by the Slave

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
580+Node-ID	8	RES	Inc	lex	Sub-Index	Date			

RES Response of Slave:

60 hex Data sent successfully

80 hex Error

Object:

With the aim to restore all parameters to default write (in exam. the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	23h	11h	10h	01h	6Ch	6Fh	61h	64h

		-			
1001h	1	Load all parameters	Unsigned 8	Wo	"load" (0x64616F6C) to restore all parameters (objects with marking PARA and LSSPARA)

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	11h	10h	01h	00h	00h	00h	00h

After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time).

Example 12: How to disable the Asynchronous Transmission (Asynchronous TPDO inactive) With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

Structure of SDO-request by the Master

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
600+Node-ID	8	CMD	Inc	lex	Sub-Index	Data	Data		

CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5 - 5 ontain a 32 bith value) 2B hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value)

Structure of SDO-answer by the Slave

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
580+Node-ID	8	RES	Inc	Index					

RES Response of Slave:

60 hex Data sent successfully

80 hex Error

With the aim to disable the asynchronous transmission write the SDO (in exam. the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	2Bh	00h	18h	05h	00h	00h	00h	00h

	0	1st Transmit PDO Parameter	Unsigned 8	Ro		
	1	COB-ID Trans PDO	Unsigned 32	Ro	180+ Node-ID	
1800h	2	Transmission Type Trans PDO - PARA	Unsigned 8	Rw	254 (0xFE)	0x01 - 0xF0 = synch cyclic Outputs are only updated after "n" synch objects n = 0x01 (1) - 0xF0 (240) 0xFC not impelemented 0xFD not implemented 0xFE = asynchronous 0xFF = not implemented
	5	Event Timer PDO - PARA	Unsigned 16	Rw	100 (0x64)	0 = inactive Min. = 4 & Max. = 65535 with unit = 1ms

Object:

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	00h	18h	05h	00h	00h	00h	00h

With the aim to save functionality write the "save" command as below: Write (in the example the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	23h	10h	10h	01h	73h	61h	76h	65h

Note: save command is given by sending the code:

73h 61h 76h 65h

Where: **73h** = ASCII code "s" **61h** = ASCII code "a" **76h** = ASCII code "v" **65h** = ASCII code "e"

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	10h	10h	01h	00h	00h	00h	00h

IMPORTANT NOTE:

After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time).

Example 13: How to enable the Synchronous Transmission (Synchronous TPDO active after 1st sync message) With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is

provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

Structure of SDO-request by the Master

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
600+Node-ID	8	CMD	Inc	lex	Sub-Index	Data			

CMD determines the direction of data transfer and the size of the data object: 23 hex Sending of 4-byte data (bytes 5 - 5 ontain a 32 bith value) 28 hex Sending of 2-byte data (bytes 5, 6 contain a 16-bit value) 2F hex Sending of 1-byte data (byte 5 contains an 8-bit value)

Structure of SDO-answer by the Slave

COB-ID	DLC	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
580+Node-ID	8	RES	Inc	lex	Sub-Index				

RES Response of Slave:

60 hex Data sent successfully

80 hex Error

Object:

With the aim to disable the synchronous transmission with TPDO active after 1st sync message write the SDO (in exam. the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	2Fh	00h	18h	02h	01	00h	00h	00h

	0	1st Transmit PDO Parameter	Unsigned 8	Ro		
	1	COB-ID Trans PDO	Unsigned 32	Ro	180+ Node-ID	
1800h	2	Transmission Type Trans PDO - PARA	Unsigned 8	Rw	254 (0xFE)	0x01 - 0xF0 = synch cyclic Outputs are only updated after "n" synch objects n = 0x01 (1) - 0xF0 (240) 0xFC not impelemented 0xFD not implemented 0xFE = asynchronous 0xFF = not implemented
	5	Event Timer PDO - PARA	Unsigned 16	Rw	100 (0x64)	0 = inactive Min. = 4 & Max. = 65535 with unit = 1ms

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	00h	18h	02h	00h	00h	00h	00h

With the aim to save functionality write the "save" command as below: Write (in the example the Node-ID = 0x7F)

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
67Fh	23h	10h	10h	01h	73h	61h	76h	65h

Note: save command is given by sending the code:

73h 61h	76h	65h
---------	-----	-----

Where: **73h** = ASCII code "s" **61h** = ASCII code "a" **76h** = ASCII code "v" **65h** = ASCII code "e"

The answer after successful storing you will receive is.

ID	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
5FFh	60h	10h	10h	01h	00h	00h	00h	00h

IMPORTANT NOTE:

After setting the new entries a reset must be made so that the new entries become valid (switch off the module for a short time).

ENGINEERING TOMORROW

Danfoss A/S Industrial Automation DK-6430 Nordborg Denmark

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.